Machine-Learning-End-to-End-guide-for-Java-developers-Data-Analysis_-Machine-Learning_-and-Neural-Ne.pdf

(34175 KB) Pobierz
Machine Learning: End-to-End guide
for Java developers
Table of Contents
Machine Learning: End-to-End guide for Java developers
Credits
Preface
What this learning path covers
What you need for this learning path
Who this learning path is for
Reader feedback
Customer support
Downloading the example code
Errata
Piracy
Questions
1. Module 1
1. Getting Started with Data Science
Problems solved using data science
Understanding the data science problem - solving approach
Using Java to support data science
Acquiring data for an application
The importance and process of cleaning data
Visualizing data to enhance understanding
The use of statistical methods in data science
Machine learning applied to data science
Using neural networks in data science
Deep learning approaches
Performing text analysis
Visual and audio analysis
Improving application performance using parallel techniques
Assembling the pieces
Summary
2. Data Acquisition
Understanding the data formats used in data science applications
Overview of CSV data
Overview of spreadsheets
Overview of databases
Overview of PDF files
Overview of JSON
Overview of XML
Overview of streaming data
Overview of audio/video/images in Java
Data acquisition techniques
Using the HttpUrlConnection class
Web crawlers in Java
Creating your own web crawler
Using the crawler4j web crawler
Web scraping in Java
Using API calls to access common social media sites
Using OAuth to authenticate users
Handing Twitter
Handling Wikipedia
Handling Flickr
Handling YouTube
Searching by keyword
Summary
3. Data Cleaning
Handling data formats
Handling CSV data
Handling spreadsheets
Handling Excel spreadsheets
Handling PDF files
Handling JSON
Using JSON streaming API
Using the JSON tree API
The nitty gritty of cleaning text
Using Java tokenizers to extract words
Java core tokenizers
Third-party tokenizers and libraries
Transforming data into a usable form
Simple text cleaning
Removing stop words
Finding words in text
Finding and replacing text
Data imputation
Subsetting data
Sorting text
Data validation
Validating data types
Validating dates
Validating e-mail addresses
Validating ZIP codes
Validating names
Cleaning images
Changing the contrast of an image
Smoothing an image
Brightening an image
Resizing an image
Converting images to different formats
Summary
4. Data Visualization
Understanding plots and graphs
Visual analysis goals
Creating index charts
Creating bar charts
Using country as the category
Using decade as the category
Creating stacked graphs
Creating pie charts
Creating scatter charts
Creating histograms
Creating donut charts
Creating bubble charts
Summary
5. Statistical Data Analysis Techniques
Working with mean, mode, and median
Calculating the mean
Using simple Java techniques to find mean
Using Java 8 techniques to find mean
Using Google Guava to find mean
Zgłoś jeśli naruszono regulamin